A two-point boundary value problem of dirichelet type with resonance at infinitely many eigenvalues

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinitely Many Solutions for a Robin Boundary Value Problem

Aixia Qian1 and Chong Li2 1 School of Mathematic Sciences, Qufu Normal University, Qufu Shandong 273165, China 2 Institute of Mathematics, AMSS, Academia Sinica, Beijing 100080, China Correspondence should be addressed to Aixia Qian, [email protected] and Chong Li, [email protected] Received 29 August 2009; Accepted 7 November 2009 Academic Editor: Wenming Zou Copyright q 2010 A. Qian and C. L...

متن کامل

Existence of Multiple Solutions of a Two-point Boundary Value Problem at Resonance

(1.1) { − ·· u= nu+ g(t, u), t ∈ (0, π), u(0) = u(π) = 0, where n ∈ N and g : [0, π] × R → R is a continuously differentiable function satisfying the following assumptions: (g1) g(t, 0) ≡ 0. (g2) lim|s|→∞ g′ s(t, s) = 0 uniformly in t ∈ (0, π). (g3) There exists R0 > 0 such that g(t, s)s > 0 for any s ∈ R with |s| ≥ R0 and for a.e. t ∈ (0, π). (g4) There exist some positive numbers C1, C2, R1 a...

متن کامل

Infinitely Many Solutions for a Dirichlet Boundary Value Problem Depending on Two Parameters

In this paper, using Ricceri’s variational principle, we prove the existence of infinitely many weak solutions for a Dirichlet doubly eigenvalue boundary value problem.

متن کامل

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

Infinitely many solutions at a resonance ∗

We use bifurcation theory to show the existence of infinitely many solutions at the first eigenvalue for a class of Dirichlet problems in one dimension. It has been observed that complexity of the solution curve for the boundary value problem u + λf(u) = 0 for 0 < x < L, u(0) = u(L) = 0 (1) seems to mirror that of the nonlinearity f(u), see e.g. P. Korman, Y. Li and T. Ouyang [6]. Namely, if f(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1990

ISSN: 0022-247X

DOI: 10.1016/0022-247x(90)90320-f